MakeItFrom.com
Menu (ESC)

6012 Aluminum vs. WE54A Magnesium

6012 aluminum belongs to the aluminum alloys classification, while WE54A magnesium belongs to the magnesium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6012 aluminum and the bottom bar is WE54A magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
44
Elongation at Break, % 9.1 to 11
4.3 to 5.6
Fatigue Strength, MPa 55 to 100
98 to 130
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
17
Shear Strength, MPa 130 to 190
150 to 170
Tensile Strength: Ultimate (UTS), MPa 220 to 320
270 to 300
Tensile Strength: Yield (Proof), MPa 110 to 260
180

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 570
570
Specific Heat Capacity, J/kg-K 890
960
Thermal Conductivity, W/m-K 160
52
Thermal Expansion, µm/m-K 23
25

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
10
Electrical Conductivity: Equal Weight (Specific), % IACS 140
47

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
34
Density, g/cm3 2.9
1.9
Embodied Carbon, kg CO2/kg material 8.2
29
Embodied Energy, MJ/kg 150
260
Embodied Water, L/kg 1170
900

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 28
10 to 14
Resilience: Unit (Modulus of Resilience), kJ/m3 94 to 480
360 to 380
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 48
62
Strength to Weight: Axial, points 22 to 32
39 to 43
Strength to Weight: Bending, points 29 to 37
49 to 51
Thermal Diffusivity, mm2/s 62
28
Thermal Shock Resistance, points 10 to 14
18 to 19

Alloy Composition

Aluminum (Al), % 92.2 to 98
0
Bismuth (Bi), % 0 to 0.7
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.1
0 to 0.030
Iron (Fe), % 0 to 0.5
0 to 0.010
Lead (Pb), % 0.4 to 2.0
0
Lithium (Li), % 0
0 to 0.2
Magnesium (Mg), % 0.6 to 1.2
88.7 to 93.4
Manganese (Mn), % 0.4 to 1.0
0 to 0.030
Nickel (Ni), % 0
0 to 0.0050
Silicon (Si), % 0.6 to 1.4
0 to 0.010
Titanium (Ti), % 0 to 0.2
0
Unspecified Rare Earths, % 0
1.5 to 4.0
Yttrium (Y), % 0
4.8 to 5.5
Zinc (Zn), % 0 to 0.3
0 to 0.2
Zirconium (Zr), % 0
0.4 to 1.0
Residuals, % 0
0 to 0.3

Comparable Variants