MakeItFrom.com
Menu (ESC)

6013 Aluminum vs. 206.0 Aluminum

Both 6013 aluminum and 206.0 aluminum are aluminum alloys. They have a very high 96% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 6013 aluminum and the bottom bar is 206.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
71
Elongation at Break, % 3.4 to 22
8.4 to 12
Fatigue Strength, MPa 98 to 140
88 to 210
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Shear Strength, MPa 190 to 240
260
Tensile Strength: Ultimate (UTS), MPa 310 to 410
330 to 440
Tensile Strength: Yield (Proof), MPa 170 to 350
190 to 350

Thermal Properties

Latent Heat of Fusion, J/g 410
390
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 650
650
Melting Onset (Solidus), °C 580
570
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 150
120
Thermal Expansion, µm/m-K 23
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
33
Electrical Conductivity: Equal Weight (Specific), % IACS 120
99

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.8
3.0
Embodied Carbon, kg CO2/kg material 8.3
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1170
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 58
24 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 200 to 900
270 to 840
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
46
Strength to Weight: Axial, points 31 to 41
30 to 40
Strength to Weight: Bending, points 37 to 44
35 to 42
Thermal Diffusivity, mm2/s 60
46
Thermal Shock Resistance, points 14 to 18
17 to 23

Alloy Composition

Aluminum (Al), % 94.8 to 97.8
93.3 to 95.3
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0.6 to 1.1
4.2 to 5.0
Iron (Fe), % 0 to 0.5
0 to 0.15
Magnesium (Mg), % 0.8 to 1.2
0.15 to 0.35
Manganese (Mn), % 0.2 to 0.8
0.2 to 0.5
Nickel (Ni), % 0
0 to 0.050
Silicon (Si), % 0.6 to 1.0
0 to 0.1
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.1
0.15 to 0.3
Zinc (Zn), % 0 to 0.25
0 to 0.1
Residuals, % 0
0 to 0.15

Comparable Variants