MakeItFrom.com
Menu (ESC)

6013 Aluminum vs. AISI 317 Stainless Steel

6013 aluminum belongs to the aluminum alloys classification, while AISI 317 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6013 aluminum and the bottom bar is AISI 317 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 3.4 to 22
35 to 55
Fatigue Strength, MPa 98 to 140
250 to 330
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
79
Shear Strength, MPa 190 to 240
420 to 470
Tensile Strength: Ultimate (UTS), MPa 310 to 410
580 to 710
Tensile Strength: Yield (Proof), MPa 170 to 350
250 to 420

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 160
590
Melting Completion (Liquidus), °C 650
1400
Melting Onset (Solidus), °C 580
1380
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 150
15
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
21
Density, g/cm3 2.8
7.9
Embodied Carbon, kg CO2/kg material 8.3
4.3
Embodied Energy, MJ/kg 150
59
Embodied Water, L/kg 1170
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 58
210 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 200 to 900
150 to 430
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 31 to 41
20 to 25
Strength to Weight: Bending, points 37 to 44
20 to 22
Thermal Diffusivity, mm2/s 60
4.1
Thermal Shock Resistance, points 14 to 18
12 to 15

Alloy Composition

Aluminum (Al), % 94.8 to 97.8
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.1
18 to 20
Copper (Cu), % 0.6 to 1.1
0
Iron (Fe), % 0 to 0.5
58 to 68
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0.2 to 0.8
0 to 2.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
11 to 15
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.6 to 1.0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0