MakeItFrom.com
Menu (ESC)

6013 Aluminum vs. EN AC-42200 Aluminum

Both 6013 aluminum and EN AC-42200 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6013 aluminum and the bottom bar is EN AC-42200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
70
Elongation at Break, % 3.4 to 22
3.0 to 6.7
Fatigue Strength, MPa 98 to 140
86 to 90
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 310 to 410
320
Tensile Strength: Yield (Proof), MPa 170 to 350
240 to 260

Thermal Properties

Latent Heat of Fusion, J/g 410
500
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 650
610
Melting Onset (Solidus), °C 580
600
Specific Heat Capacity, J/kg-K 900
910
Thermal Conductivity, W/m-K 150
150
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
40
Electrical Conductivity: Equal Weight (Specific), % IACS 120
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.8
2.6
Embodied Carbon, kg CO2/kg material 8.3
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1170
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 58
9.0 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 200 to 900
410 to 490
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 49
53
Strength to Weight: Axial, points 31 to 41
34 to 35
Strength to Weight: Bending, points 37 to 44
40 to 41
Thermal Diffusivity, mm2/s 60
66
Thermal Shock Resistance, points 14 to 18
15

Alloy Composition

Aluminum (Al), % 94.8 to 97.8
91 to 93.1
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0.6 to 1.1
0 to 0.050
Iron (Fe), % 0 to 0.5
0 to 0.19
Magnesium (Mg), % 0.8 to 1.2
0.45 to 0.7
Manganese (Mn), % 0.2 to 0.8
0 to 0.1
Silicon (Si), % 0.6 to 1.0
6.5 to 7.5
Titanium (Ti), % 0 to 0.1
0 to 0.25
Zinc (Zn), % 0 to 0.25
0 to 0.070
Residuals, % 0
0 to 0.1

Comparable Variants