MakeItFrom.com
Menu (ESC)

6013 Aluminum vs. EN AC-47100 Aluminum

Both 6013 aluminum and EN AC-47100 aluminum are aluminum alloys. They have 88% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6013 aluminum and the bottom bar is EN AC-47100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
73
Elongation at Break, % 3.4 to 22
1.1
Fatigue Strength, MPa 98 to 140
110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 310 to 410
270
Tensile Strength: Yield (Proof), MPa 170 to 350
160

Thermal Properties

Latent Heat of Fusion, J/g 410
570
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 650
590
Melting Onset (Solidus), °C 580
560
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 150
130
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
30
Electrical Conductivity: Equal Weight (Specific), % IACS 120
100

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.8
2.6
Embodied Carbon, kg CO2/kg material 8.3
7.6
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1170
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 58
2.6
Resilience: Unit (Modulus of Resilience), kJ/m3 200 to 900
170
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 49
53
Strength to Weight: Axial, points 31 to 41
28
Strength to Weight: Bending, points 37 to 44
35
Thermal Diffusivity, mm2/s 60
54
Thermal Shock Resistance, points 14 to 18
12

Alloy Composition

Aluminum (Al), % 94.8 to 97.8
81.4 to 88.8
Chromium (Cr), % 0 to 0.1
0 to 0.1
Copper (Cu), % 0.6 to 1.1
0.7 to 1.2
Iron (Fe), % 0 to 0.5
0 to 1.3
Lead (Pb), % 0
0 to 0.2
Magnesium (Mg), % 0.8 to 1.2
0 to 0.35
Manganese (Mn), % 0.2 to 0.8
0 to 0.55
Nickel (Ni), % 0
0 to 0.3
Silicon (Si), % 0.6 to 1.0
10.5 to 13.5
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0 to 0.1
0 to 0.2
Zinc (Zn), % 0 to 0.25
0 to 0.55
Residuals, % 0
0 to 0.25