MakeItFrom.com
Menu (ESC)

6013 Aluminum vs. Nickel 22

6013 aluminum belongs to the aluminum alloys classification, while nickel 22 belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6013 aluminum and the bottom bar is nickel 22.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
220
Elongation at Break, % 3.4 to 22
49
Fatigue Strength, MPa 98 to 140
330
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
84
Shear Strength, MPa 190 to 240
560
Tensile Strength: Ultimate (UTS), MPa 310 to 410
790
Tensile Strength: Yield (Proof), MPa 170 to 350
360

Thermal Properties

Latent Heat of Fusion, J/g 410
320
Maximum Temperature: Mechanical, °C 160
990
Melting Completion (Liquidus), °C 650
1390
Melting Onset (Solidus), °C 580
1360
Specific Heat Capacity, J/kg-K 900
430
Thermal Conductivity, W/m-K 150
10
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.8
8.9
Embodied Carbon, kg CO2/kg material 8.3
12
Embodied Energy, MJ/kg 150
170
Embodied Water, L/kg 1170
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 58
320
Resilience: Unit (Modulus of Resilience), kJ/m3 200 to 900
300
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
22
Strength to Weight: Axial, points 31 to 41
25
Strength to Weight: Bending, points 37 to 44
21
Thermal Diffusivity, mm2/s 60
2.7
Thermal Shock Resistance, points 14 to 18
24

Alloy Composition

Aluminum (Al), % 94.8 to 97.8
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0 to 0.1
20 to 22.5
Cobalt (Co), % 0
0 to 2.5
Copper (Cu), % 0.6 to 1.1
0
Iron (Fe), % 0 to 0.5
2.0 to 6.0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0.2 to 0.8
0 to 0.015
Molybdenum (Mo), % 0
12.5 to 14.5
Nickel (Ni), % 0
50.8 to 63
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.6 to 1.0
0 to 0.080
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0
2.5 to 3.5
Vanadium (V), % 0
0 to 0.35
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0