MakeItFrom.com
Menu (ESC)

6013 Aluminum vs. SAE-AISI O6 Steel

6013 aluminum belongs to the aluminum alloys classification, while SAE-AISI O6 steel belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6013 aluminum and the bottom bar is SAE-AISI O6 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
180
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
71
Tensile Strength: Ultimate (UTS), MPa 310 to 410
670 to 2070

Thermal Properties

Latent Heat of Fusion, J/g 410
260
Melting Completion (Liquidus), °C 650
1430
Melting Onset (Solidus), °C 580
1390
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 150
43
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.3
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 8.3
1.5
Embodied Energy, MJ/kg 150
21
Embodied Water, L/kg 1170
47

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 31 to 41
24 to 74
Strength to Weight: Bending, points 37 to 44
22 to 47
Thermal Diffusivity, mm2/s 60
12
Thermal Shock Resistance, points 14 to 18
22 to 69

Alloy Composition

Aluminum (Al), % 94.8 to 97.8
0
Carbon (C), % 0
1.3 to 1.6
Chromium (Cr), % 0 to 0.1
0 to 0.3
Copper (Cu), % 0.6 to 1.1
0 to 0.25
Iron (Fe), % 0 to 0.5
94.6 to 97.7
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0.2 to 0.8
0.3 to 1.1
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.6 to 1.0
0.55 to 1.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0