MakeItFrom.com
Menu (ESC)

6013 Aluminum vs. C41500 Brass

6013 aluminum belongs to the aluminum alloys classification, while C41500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6013 aluminum and the bottom bar is C41500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
110
Elongation at Break, % 3.4 to 22
2.0 to 42
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
42
Shear Strength, MPa 190 to 240
220 to 360
Tensile Strength: Ultimate (UTS), MPa 310 to 410
340 to 560
Tensile Strength: Yield (Proof), MPa 170 to 350
190 to 550

Thermal Properties

Latent Heat of Fusion, J/g 410
200
Maximum Temperature: Mechanical, °C 160
180
Melting Completion (Liquidus), °C 650
1030
Melting Onset (Solidus), °C 580
1010
Specific Heat Capacity, J/kg-K 900
380
Thermal Conductivity, W/m-K 150
120
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
28
Electrical Conductivity: Equal Weight (Specific), % IACS 120
29

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
30
Density, g/cm3 2.8
8.7
Embodied Carbon, kg CO2/kg material 8.3
2.8
Embodied Energy, MJ/kg 150
45
Embodied Water, L/kg 1170
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 58
11 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 200 to 900
160 to 1340
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 49
18
Strength to Weight: Axial, points 31 to 41
11 to 18
Strength to Weight: Bending, points 37 to 44
12 to 17
Thermal Diffusivity, mm2/s 60
37
Thermal Shock Resistance, points 14 to 18
12 to 20

Alloy Composition

Aluminum (Al), % 94.8 to 97.8
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0.6 to 1.1
89 to 93
Iron (Fe), % 0 to 0.5
0 to 0.050
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0.2 to 0.8
0
Silicon (Si), % 0.6 to 1.0
0
Tin (Sn), % 0
1.5 to 2.2
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
4.2 to 9.5
Residuals, % 0
0 to 0.5