MakeItFrom.com
Menu (ESC)

6013 Aluminum vs. C66900 Brass

6013 aluminum belongs to the aluminum alloys classification, while C66900 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6013 aluminum and the bottom bar is C66900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
120
Elongation at Break, % 3.4 to 22
1.1 to 26
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
45
Shear Strength, MPa 190 to 240
290 to 440
Tensile Strength: Ultimate (UTS), MPa 310 to 410
460 to 770
Tensile Strength: Yield (Proof), MPa 170 to 350
330 to 760

Thermal Properties

Latent Heat of Fusion, J/g 410
190
Maximum Temperature: Mechanical, °C 160
150
Melting Completion (Liquidus), °C 650
860
Melting Onset (Solidus), °C 580
850
Specific Heat Capacity, J/kg-K 900
400
Thermal Expansion, µm/m-K 23
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 120
3.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
23
Density, g/cm3 2.8
8.2
Embodied Carbon, kg CO2/kg material 8.3
2.8
Embodied Energy, MJ/kg 150
46
Embodied Water, L/kg 1170
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 58
4.6 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 200 to 900
460 to 2450
Stiffness to Weight: Axial, points 14
8.1
Stiffness to Weight: Bending, points 49
20
Strength to Weight: Axial, points 31 to 41
15 to 26
Strength to Weight: Bending, points 37 to 44
16 to 23
Thermal Shock Resistance, points 14 to 18
14 to 23

Alloy Composition

Aluminum (Al), % 94.8 to 97.8
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0.6 to 1.1
62.5 to 64.5
Iron (Fe), % 0 to 0.5
0 to 0.25
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0.2 to 0.8
11.5 to 12.5
Silicon (Si), % 0.6 to 1.0
0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
22.5 to 26
Residuals, % 0
0 to 0.2