MakeItFrom.com
Menu (ESC)

6013 Aluminum vs. C82800 Copper

6013 aluminum belongs to the aluminum alloys classification, while C82800 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6013 aluminum and the bottom bar is C82800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
120
Elongation at Break, % 3.4 to 22
1.0 to 20
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
46
Tensile Strength: Ultimate (UTS), MPa 310 to 410
670 to 1140
Tensile Strength: Yield (Proof), MPa 170 to 350
380 to 1000

Thermal Properties

Latent Heat of Fusion, J/g 410
240
Maximum Temperature: Mechanical, °C 160
310
Melting Completion (Liquidus), °C 650
930
Melting Onset (Solidus), °C 580
890
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 150
120
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
18
Electrical Conductivity: Equal Weight (Specific), % IACS 120
19

Otherwise Unclassified Properties

Density, g/cm3 2.8
8.7
Embodied Carbon, kg CO2/kg material 8.3
12
Embodied Energy, MJ/kg 150
190
Embodied Water, L/kg 1170
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 58
11 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 200 to 900
590 to 4080
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 49
19
Strength to Weight: Axial, points 31 to 41
21 to 36
Strength to Weight: Bending, points 37 to 44
20 to 28
Thermal Diffusivity, mm2/s 60
36
Thermal Shock Resistance, points 14 to 18
23 to 39

Alloy Composition

Aluminum (Al), % 94.8 to 97.8
0 to 0.15
Beryllium (Be), % 0
2.5 to 2.9
Chromium (Cr), % 0 to 0.1
0 to 0.1
Cobalt (Co), % 0
0.15 to 0.7
Copper (Cu), % 0.6 to 1.1
94.6 to 97.2
Iron (Fe), % 0 to 0.5
0 to 0.25
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0.2 to 0.8
0
Nickel (Ni), % 0
0 to 0.2
Silicon (Si), % 0.6 to 1.0
0.2 to 0.35
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0 to 0.1
0 to 0.12
Zinc (Zn), % 0 to 0.25
0 to 0.1
Residuals, % 0
0 to 0.5