MakeItFrom.com
Menu (ESC)

6013 Aluminum vs. N07752 Nickel

6013 aluminum belongs to the aluminum alloys classification, while N07752 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6013 aluminum and the bottom bar is N07752 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 3.4 to 22
22
Fatigue Strength, MPa 98 to 140
450
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 190 to 240
710
Tensile Strength: Ultimate (UTS), MPa 310 to 410
1120
Tensile Strength: Yield (Proof), MPa 170 to 350
740

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 160
960
Melting Completion (Liquidus), °C 650
1380
Melting Onset (Solidus), °C 580
1330
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 150
13
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.8
8.4
Embodied Carbon, kg CO2/kg material 8.3
10
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1170
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 58
220
Resilience: Unit (Modulus of Resilience), kJ/m3 200 to 900
1450
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
23
Strength to Weight: Axial, points 31 to 41
37
Strength to Weight: Bending, points 37 to 44
29
Thermal Diffusivity, mm2/s 60
3.2
Thermal Shock Resistance, points 14 to 18
34

Alloy Composition

Aluminum (Al), % 94.8 to 97.8
0.4 to 1.0
Boron (B), % 0
0 to 0.0070
Carbon (C), % 0
0.020 to 0.060
Chromium (Cr), % 0 to 0.1
14.5 to 17
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 0.6 to 1.1
0 to 0.5
Iron (Fe), % 0 to 0.5
5.0 to 9.0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0.2 to 0.8
0 to 1.0
Nickel (Ni), % 0
70 to 77.1
Niobium (Nb), % 0
0.7 to 1.2
Phosphorus (P), % 0
0 to 0.0080
Silicon (Si), % 0.6 to 1.0
0 to 0.5
Sulfur (S), % 0
0 to 0.0030
Titanium (Ti), % 0 to 0.1
2.3 to 2.8
Vanadium (V), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.25
0 to 0.050
Residuals, % 0 to 0.15
0