MakeItFrom.com
Menu (ESC)

6014 Aluminum vs. AISI 201L Stainless Steel

6014 aluminum belongs to the aluminum alloys classification, while AISI 201L stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6014 aluminum and the bottom bar is AISI 201L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 9.1 to 17
22 to 46
Fatigue Strength, MPa 43 to 79
270 to 530
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 96 to 150
520 to 660
Tensile Strength: Ultimate (UTS), MPa 160 to 260
740 to 1040
Tensile Strength: Yield (Proof), MPa 80 to 200
290 to 790

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 180
880
Melting Completion (Liquidus), °C 640
1410
Melting Onset (Solidus), °C 620
1370
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 200
15
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 53
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 180
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.6
2.6
Embodied Energy, MJ/kg 160
38
Embodied Water, L/kg 1190
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22
210 to 300
Resilience: Unit (Modulus of Resilience), kJ/m3 46 to 300
220 to 1570
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 16 to 26
27 to 37
Strength to Weight: Bending, points 24 to 33
24 to 30
Thermal Diffusivity, mm2/s 83
4.0
Thermal Shock Resistance, points 7.0 to 11
16 to 23

Alloy Composition

Aluminum (Al), % 97.1 to 99.2
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.2
16 to 18
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.35
67.9 to 75
Magnesium (Mg), % 0.4 to 0.8
0
Manganese (Mn), % 0.050 to 0.2
5.5 to 7.5
Nickel (Ni), % 0
3.5 to 5.5
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.3 to 0.6
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0.050 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0