MakeItFrom.com
Menu (ESC)

6014 Aluminum vs. AWS E316H

6014 aluminum belongs to the aluminum alloys classification, while AWS E316H belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6014 aluminum and the bottom bar is AWS E316H.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 9.1 to 17
34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Tensile Strength: Ultimate (UTS), MPa 160 to 260
580

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 620
1390
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 200
15
Thermal Expansion, µm/m-K 23
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 53
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 180
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
20
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.6
4.0
Embodied Energy, MJ/kg 160
55
Embodied Water, L/kg 1190
160

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 16 to 26
21
Strength to Weight: Bending, points 24 to 33
20
Thermal Diffusivity, mm2/s 83
4.0
Thermal Shock Resistance, points 7.0 to 11
15

Alloy Composition

Aluminum (Al), % 97.1 to 99.2
0
Carbon (C), % 0
0.040 to 0.080
Chromium (Cr), % 0 to 0.2
17 to 20
Copper (Cu), % 0 to 0.25
0 to 0.75
Iron (Fe), % 0 to 0.35
58.6 to 69.5
Magnesium (Mg), % 0.4 to 0.8
0
Manganese (Mn), % 0.050 to 0.2
0.5 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
11 to 14
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.3 to 0.6
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0.050 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0