MakeItFrom.com
Menu (ESC)

6014 Aluminum vs. EN 1.3558 Steel

6014 aluminum belongs to the aluminum alloys classification, while EN 1.3558 steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6014 aluminum and the bottom bar is EN 1.3558 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
210
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 160 to 260
770

Thermal Properties

Latent Heat of Fusion, J/g 400
240
Maximum Temperature: Mechanical, °C 180
490
Melting Completion (Liquidus), °C 640
1810
Melting Onset (Solidus), °C 620
1760
Specific Heat Capacity, J/kg-K 900
410
Thermal Conductivity, W/m-K 200
20
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 53
13
Electrical Conductivity: Equal Weight (Specific), % IACS 180
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
45
Density, g/cm3 2.7
9.3
Embodied Carbon, kg CO2/kg material 8.6
8.4
Embodied Energy, MJ/kg 160
130
Embodied Water, L/kg 1190
90

Common Calculations

Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 50
21
Strength to Weight: Axial, points 16 to 26
23
Strength to Weight: Bending, points 24 to 33
20
Thermal Diffusivity, mm2/s 83
5.3
Thermal Shock Resistance, points 7.0 to 11
22

Alloy Composition

Aluminum (Al), % 97.1 to 99.2
0
Carbon (C), % 0
0.7 to 0.8
Chromium (Cr), % 0 to 0.2
3.9 to 4.3
Copper (Cu), % 0 to 0.25
0 to 0.3
Iron (Fe), % 0 to 0.35
73.7 to 77.6
Magnesium (Mg), % 0.4 to 0.8
0
Manganese (Mn), % 0.050 to 0.2
0 to 0.4
Molybdenum (Mo), % 0
0 to 0.6
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.3 to 0.6
0 to 0.4
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0
17.5 to 19
Vanadium (V), % 0.050 to 0.2
1.0 to 1.3
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0