MakeItFrom.com
Menu (ESC)

6014 Aluminum vs. EN 1.4938 Stainless Steel

6014 aluminum belongs to the aluminum alloys classification, while EN 1.4938 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6014 aluminum and the bottom bar is EN 1.4938 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 9.1 to 17
16 to 17
Fatigue Strength, MPa 43 to 79
390 to 520
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 96 to 150
540 to 630
Tensile Strength: Ultimate (UTS), MPa 160 to 260
870 to 1030
Tensile Strength: Yield (Proof), MPa 80 to 200
640 to 870

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 180
750
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 620
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 200
30
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 53
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 180
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.6
3.3
Embodied Energy, MJ/kg 160
47
Embodied Water, L/kg 1190
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22
140 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 46 to 300
1050 to 1920
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 16 to 26
31 to 37
Strength to Weight: Bending, points 24 to 33
26 to 29
Thermal Diffusivity, mm2/s 83
8.1
Thermal Shock Resistance, points 7.0 to 11
30 to 35

Alloy Composition

Aluminum (Al), % 97.1 to 99.2
0
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0 to 0.2
11 to 12.5
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.35
80.5 to 84.8
Magnesium (Mg), % 0.4 to 0.8
0
Manganese (Mn), % 0.050 to 0.2
0.4 to 0.9
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 0
2.0 to 3.0
Nitrogen (N), % 0
0.020 to 0.040
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.3 to 0.6
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0.050 to 0.2
0.25 to 0.4
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0