MakeItFrom.com
Menu (ESC)

6014 Aluminum vs. EN AC-45300 Aluminum

Both 6014 aluminum and EN AC-45300 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6014 aluminum and the bottom bar is EN AC-45300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
71
Elongation at Break, % 9.1 to 17
1.0 to 2.8
Fatigue Strength, MPa 43 to 79
59 to 72
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 160 to 260
220 to 290
Tensile Strength: Yield (Proof), MPa 80 to 200
150 to 230

Thermal Properties

Latent Heat of Fusion, J/g 400
470
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 640
630
Melting Onset (Solidus), °C 620
590
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 200
150
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 53
36
Electrical Conductivity: Equal Weight (Specific), % IACS 180
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.6
8.0
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 1190
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22
2.7 to 5.6
Resilience: Unit (Modulus of Resilience), kJ/m3 46 to 300
160 to 390
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 16 to 26
23 to 29
Strength to Weight: Bending, points 24 to 33
30 to 35
Thermal Diffusivity, mm2/s 83
60
Thermal Shock Resistance, points 7.0 to 11
10 to 13

Alloy Composition

Aluminum (Al), % 97.1 to 99.2
90.2 to 94.2
Chromium (Cr), % 0 to 0.2
0
Copper (Cu), % 0 to 0.25
1.0 to 1.5
Iron (Fe), % 0 to 0.35
0 to 0.65
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0.4 to 0.8
0.35 to 0.65
Manganese (Mn), % 0.050 to 0.2
0 to 0.55
Nickel (Ni), % 0
0 to 0.25
Silicon (Si), % 0.3 to 0.6
4.5 to 5.5
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.1
0 to 0.25
Vanadium (V), % 0.050 to 0.2
0
Zinc (Zn), % 0 to 0.1
0 to 0.15
Residuals, % 0
0 to 0.15

Comparable Variants