MakeItFrom.com
Menu (ESC)

6014 Aluminum vs. EN AC-46600 Aluminum

Both 6014 aluminum and EN AC-46600 aluminum are aluminum alloys. They have a moderately high 90% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6014 aluminum and the bottom bar is EN AC-46600 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
72
Elongation at Break, % 9.1 to 17
1.1
Fatigue Strength, MPa 43 to 79
75
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 160 to 260
180
Tensile Strength: Yield (Proof), MPa 80 to 200
110

Thermal Properties

Latent Heat of Fusion, J/g 400
490
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 640
620
Melting Onset (Solidus), °C 620
560
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 200
130
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 53
29
Electrical Conductivity: Equal Weight (Specific), % IACS 180
94

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
2.8
Embodied Carbon, kg CO2/kg material 8.6
7.8
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 1190
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22
1.7
Resilience: Unit (Modulus of Resilience), kJ/m3 46 to 300
81
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 16 to 26
18
Strength to Weight: Bending, points 24 to 33
25
Thermal Diffusivity, mm2/s 83
51
Thermal Shock Resistance, points 7.0 to 11
8.1

Alloy Composition

Aluminum (Al), % 97.1 to 99.2
85.6 to 92.4
Chromium (Cr), % 0 to 0.2
0
Copper (Cu), % 0 to 0.25
1.5 to 2.5
Iron (Fe), % 0 to 0.35
0 to 0.8
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 0.4 to 0.8
0 to 0.35
Manganese (Mn), % 0.050 to 0.2
0.15 to 0.65
Nickel (Ni), % 0
0 to 0.35
Silicon (Si), % 0.3 to 0.6
6.0 to 8.0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.1
0 to 0.25
Vanadium (V), % 0.050 to 0.2
0
Zinc (Zn), % 0 to 0.1
0 to 1.0
Residuals, % 0
0 to 0.15