MakeItFrom.com
Menu (ESC)

6016 Aluminum vs. ASTM A182 Grade F122

6016 aluminum belongs to the aluminum alloys classification, while ASTM A182 grade F122 belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6016 aluminum and the bottom bar is ASTM A182 grade F122.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55 to 80
220
Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 11 to 27
23
Fatigue Strength, MPa 68 to 89
320
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 130 to 170
450
Tensile Strength: Ultimate (UTS), MPa 200 to 280
710
Tensile Strength: Yield (Proof), MPa 110 to 210
450

Thermal Properties

Latent Heat of Fusion, J/g 410
270
Maximum Temperature: Mechanical, °C 160
600
Melting Completion (Liquidus), °C 660
1490
Melting Onset (Solidus), °C 610
1440
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 190 to 210
24
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 48 to 54
10
Electrical Conductivity: Equal Weight (Specific), % IACS 160 to 180
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.2
3.0
Embodied Energy, MJ/kg 150
44
Embodied Water, L/kg 1180
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29 to 47
140
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 340
520
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 21 to 29
25
Strength to Weight: Bending, points 29 to 35
22
Thermal Diffusivity, mm2/s 77 to 86
6.4
Thermal Shock Resistance, points 9.1 to 12
19

Alloy Composition

Aluminum (Al), % 96.4 to 98.8
0 to 0.020
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0.070 to 0.14
Chromium (Cr), % 0 to 0.1
10 to 11.5
Copper (Cu), % 0 to 0.2
0.3 to 1.7
Iron (Fe), % 0 to 0.5
81.3 to 87.7
Magnesium (Mg), % 0.25 to 0.6
0
Manganese (Mn), % 0 to 0.2
0 to 0.7
Molybdenum (Mo), % 0
0.25 to 0.6
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.040 to 0.1
Nitrogen (N), % 0
0.040 to 0.1
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 1.0 to 1.5
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.15
0 to 0.010
Tungsten (W), % 0
1.5 to 2.5
Vanadium (V), % 0
0.15 to 0.3
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.15
0