MakeItFrom.com
Menu (ESC)

6016 Aluminum vs. ASTM A387 Grade 9 Steel

6016 aluminum belongs to the aluminum alloys classification, while ASTM A387 grade 9 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6016 aluminum and the bottom bar is ASTM A387 grade 9 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55 to 80
150 to 180
Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 11 to 27
20 to 21
Fatigue Strength, MPa 68 to 89
160 to 240
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
75
Shear Strength, MPa 130 to 170
310 to 380
Tensile Strength: Ultimate (UTS), MPa 200 to 280
500 to 600
Tensile Strength: Yield (Proof), MPa 110 to 210
230 to 350

Thermal Properties

Latent Heat of Fusion, J/g 410
270
Maximum Temperature: Mechanical, °C 160
600
Melting Completion (Liquidus), °C 660
1460
Melting Onset (Solidus), °C 610
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 190 to 210
26
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 48 to 54
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 160 to 180
10

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
6.5
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.2
2.1
Embodied Energy, MJ/kg 150
28
Embodied Water, L/kg 1180
87

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29 to 47
83 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 340
140 to 310
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 21 to 29
18 to 21
Strength to Weight: Bending, points 29 to 35
18 to 20
Thermal Diffusivity, mm2/s 77 to 86
6.9
Thermal Shock Resistance, points 9.1 to 12
14 to 17

Alloy Composition

Aluminum (Al), % 96.4 to 98.8
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.1
8.0 to 10
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.5
87.1 to 90.8
Magnesium (Mg), % 0.25 to 0.6
0
Manganese (Mn), % 0 to 0.2
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 1.0 to 1.5
0 to 1.0
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.15
0
Vanadium (V), % 0
0 to 0.040
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0