MakeItFrom.com
Menu (ESC)

6016 Aluminum vs. ASTM Grade HN Steel

6016 aluminum belongs to the aluminum alloys classification, while ASTM grade HN steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6016 aluminum and the bottom bar is ASTM grade HN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55 to 80
140
Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 11 to 27
9.0
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 200 to 280
500

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 160
1080
Melting Completion (Liquidus), °C 660
1400
Melting Onset (Solidus), °C 610
1350
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 190 to 210
13
Thermal Expansion, µm/m-K 23
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
26
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.2
4.6
Embodied Energy, MJ/kg 150
66
Embodied Water, L/kg 1180
180

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 21 to 29
17
Strength to Weight: Bending, points 29 to 35
18
Thermal Diffusivity, mm2/s 77 to 86
3.5
Thermal Shock Resistance, points 9.1 to 12
11

Alloy Composition

Aluminum (Al), % 96.4 to 98.8
0
Carbon (C), % 0
0.2 to 0.5
Chromium (Cr), % 0 to 0.1
19 to 23
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.5
44.9 to 57.8
Magnesium (Mg), % 0.25 to 0.6
0
Manganese (Mn), % 0 to 0.2
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
23 to 27
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 1.0 to 1.5
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0