MakeItFrom.com
Menu (ESC)

6016 Aluminum vs. EN 1.4150 Stainless Steel

6016 aluminum belongs to the aluminum alloys classification, while EN 1.4150 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6016 aluminum and the bottom bar is EN 1.4150 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55 to 80
220
Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 11 to 27
20
Fatigue Strength, MPa 68 to 89
270
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 130 to 170
460
Tensile Strength: Ultimate (UTS), MPa 200 to 280
730
Tensile Strength: Yield (Proof), MPa 110 to 210
430

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 160
840
Melting Completion (Liquidus), °C 660
1420
Melting Onset (Solidus), °C 610
1380
Specific Heat Capacity, J/kg-K 900
490
Thermal Conductivity, W/m-K 190 to 210
23
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 48 to 54
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 160 to 180
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
8.5
Density, g/cm3 2.7
7.6
Embodied Carbon, kg CO2/kg material 8.2
2.8
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1180
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29 to 47
120
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 340
470
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 21 to 29
27
Strength to Weight: Bending, points 29 to 35
24
Thermal Diffusivity, mm2/s 77 to 86
6.2
Thermal Shock Resistance, points 9.1 to 12
27

Alloy Composition

Aluminum (Al), % 96.4 to 98.8
0
Carbon (C), % 0
0.45 to 0.6
Chromium (Cr), % 0 to 0.1
15 to 16.5
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.5
79 to 82.8
Magnesium (Mg), % 0.25 to 0.6
0
Manganese (Mn), % 0 to 0.2
0 to 0.8
Molybdenum (Mo), % 0
0.2 to 0.4
Nickel (Ni), % 0
0 to 0.4
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 1.0 to 1.5
1.3 to 1.7
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.15
0
Vanadium (V), % 0
0.2 to 0.4
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0