MakeItFrom.com
Menu (ESC)

6016 Aluminum vs. EN 1.4411 Stainless Steel

6016 aluminum belongs to the aluminum alloys classification, while EN 1.4411 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6016 aluminum and the bottom bar is EN 1.4411 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 11 to 27
17
Fatigue Strength, MPa 68 to 89
370
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Tensile Strength: Ultimate (UTS), MPa 200 to 280
870
Tensile Strength: Yield (Proof), MPa 110 to 210
600

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 160
880
Melting Completion (Liquidus), °C 660
1450
Melting Onset (Solidus), °C 610
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 190 to 210
17
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 48 to 54
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 160 to 180
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
13
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.2
3.0
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1180
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29 to 47
130
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 340
920
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 21 to 29
31
Strength to Weight: Bending, points 29 to 35
26
Thermal Diffusivity, mm2/s 77 to 86
4.6
Thermal Shock Resistance, points 9.1 to 12
28

Alloy Composition

Aluminum (Al), % 96.4 to 98.8
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0 to 0.1
15 to 17
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.5
73.1 to 79.5
Magnesium (Mg), % 0.25 to 0.6
0
Manganese (Mn), % 0 to 0.2
0 to 1.0
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 0
4.0 to 6.0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 1.0 to 1.5
0 to 0.8
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0