MakeItFrom.com
Menu (ESC)

6016 Aluminum vs. EN 1.8873 Steel

6016 aluminum belongs to the aluminum alloys classification, while EN 1.8873 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6016 aluminum and the bottom bar is EN 1.8873 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55 to 80
200
Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 11 to 27
19
Fatigue Strength, MPa 68 to 89
340
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 130 to 170
410
Tensile Strength: Ultimate (UTS), MPa 200 to 280
660
Tensile Strength: Yield (Proof), MPa 110 to 210
490

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 160
420
Melting Completion (Liquidus), °C 660
1460
Melting Onset (Solidus), °C 610
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 190 to 210
39
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 48 to 54
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 160 to 180
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.2
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.2
1.8
Embodied Energy, MJ/kg 150
24
Embodied Water, L/kg 1180
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29 to 47
110
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 340
650
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 21 to 29
23
Strength to Weight: Bending, points 29 to 35
21
Thermal Diffusivity, mm2/s 77 to 86
10
Thermal Shock Resistance, points 9.1 to 12
19

Alloy Composition

Aluminum (Al), % 96.4 to 98.8
0
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0 to 0.18
Chromium (Cr), % 0 to 0.1
0 to 1.0
Copper (Cu), % 0 to 0.2
0 to 0.3
Iron (Fe), % 0 to 0.5
93.6 to 100
Magnesium (Mg), % 0.25 to 0.6
0
Manganese (Mn), % 0 to 0.2
0 to 1.7
Molybdenum (Mo), % 0
0 to 0.7
Nickel (Ni), % 0
0 to 1.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 1.0 to 1.5
0 to 0.6
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.15
0 to 0.050
Vanadium (V), % 0
0 to 0.080
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0 to 0.15
0