MakeItFrom.com
Menu (ESC)

6016 Aluminum vs. N06058 Nickel

6016 aluminum belongs to the aluminum alloys classification, while N06058 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6016 aluminum and the bottom bar is N06058 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
220
Elongation at Break, % 11 to 27
45
Fatigue Strength, MPa 68 to 89
350
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
86
Shear Strength, MPa 130 to 170
600
Tensile Strength: Ultimate (UTS), MPa 200 to 280
860
Tensile Strength: Yield (Proof), MPa 110 to 210
410

Thermal Properties

Latent Heat of Fusion, J/g 410
330
Maximum Temperature: Mechanical, °C 160
980
Melting Completion (Liquidus), °C 660
1540
Melting Onset (Solidus), °C 610
1490
Specific Heat Capacity, J/kg-K 900
420
Thermal Conductivity, W/m-K 190 to 210
9.8
Thermal Expansion, µm/m-K 23
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.7
8.8
Embodied Carbon, kg CO2/kg material 8.2
13
Embodied Energy, MJ/kg 150
170
Embodied Water, L/kg 1180
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29 to 47
320
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 340
370
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
23
Strength to Weight: Axial, points 21 to 29
27
Strength to Weight: Bending, points 29 to 35
23
Thermal Diffusivity, mm2/s 77 to 86
2.6
Thermal Shock Resistance, points 9.1 to 12
23

Alloy Composition

Aluminum (Al), % 96.4 to 98.8
0 to 0.4
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0 to 0.1
20 to 23
Cobalt (Co), % 0
0 to 0.3
Copper (Cu), % 0 to 0.2
0 to 0.5
Iron (Fe), % 0 to 0.5
0 to 1.5
Magnesium (Mg), % 0.25 to 0.6
0
Manganese (Mn), % 0 to 0.2
0 to 0.5
Molybdenum (Mo), % 0
19 to 21
Nickel (Ni), % 0
52.2 to 61
Nitrogen (N), % 0
0.020 to 0.15
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 1.0 to 1.5
0 to 0.1
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.15
0
Tungsten (W), % 0
0 to 0.3
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0