MakeItFrom.com
Menu (ESC)

6018 Aluminum vs. 5052 Aluminum

Both 6018 aluminum and 5052 aluminum are aluminum alloys. They have a very high 97% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6018 aluminum and the bottom bar is 5052 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
68
Elongation at Break, % 9.0 to 9.1
1.1 to 22
Fatigue Strength, MPa 85 to 89
66 to 140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 170 to 180
120 to 180
Tensile Strength: Ultimate (UTS), MPa 290 to 300
190 to 320
Tensile Strength: Yield (Proof), MPa 220 to 230
75 to 280

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 160
190
Melting Completion (Liquidus), °C 640
650
Melting Onset (Solidus), °C 570
610
Specific Heat Capacity, J/kg-K 890
900
Thermal Conductivity, W/m-K 170
140
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
35
Electrical Conductivity: Equal Weight (Specific), % IACS 140
120

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 2.9
2.7
Embodied Carbon, kg CO2/kg material 8.2
8.6
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 25
1.7 to 69
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
41 to 590
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
50
Strength to Weight: Axial, points 28 to 29
19 to 33
Strength to Weight: Bending, points 34 to 35
27 to 38
Thermal Diffusivity, mm2/s 65
57
Thermal Shock Resistance, points 13
8.3 to 14

Alloy Composition

Aluminum (Al), % 93.1 to 97.8
95.8 to 97.7
Bismuth (Bi), % 0.4 to 0.7
0
Chromium (Cr), % 0 to 0.1
0.15 to 0.35
Copper (Cu), % 0.15 to 0.4
0 to 0.1
Iron (Fe), % 0 to 0.7
0 to 0.4
Lead (Pb), % 0.4 to 1.2
0
Magnesium (Mg), % 0.6 to 1.2
2.2 to 2.8
Manganese (Mn), % 0.3 to 0.8
0 to 0.1
Silicon (Si), % 0.5 to 1.2
0 to 0.25
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.3
0 to 0.1
Residuals, % 0
0 to 0.15