MakeItFrom.com
Menu (ESC)

6018 Aluminum vs. A413.0 Aluminum

Both 6018 aluminum and A413.0 aluminum are aluminum alloys. They have 88% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 6018 aluminum and the bottom bar is A413.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
73
Elongation at Break, % 9.0 to 9.1
3.5
Fatigue Strength, MPa 85 to 89
130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Shear Strength, MPa 170 to 180
170
Tensile Strength: Ultimate (UTS), MPa 290 to 300
240
Tensile Strength: Yield (Proof), MPa 220 to 230
130

Thermal Properties

Latent Heat of Fusion, J/g 400
570
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 640
590
Melting Onset (Solidus), °C 570
580
Specific Heat Capacity, J/kg-K 890
900
Thermal Conductivity, W/m-K 170
120
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
31
Electrical Conductivity: Equal Weight (Specific), % IACS 140
110

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 2.9
2.6
Embodied Carbon, kg CO2/kg material 8.2
7.6
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1180
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 25
7.1
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
120
Stiffness to Weight: Axial, points 13
16
Stiffness to Weight: Bending, points 48
54
Strength to Weight: Axial, points 28 to 29
25
Strength to Weight: Bending, points 34 to 35
33
Thermal Diffusivity, mm2/s 65
52
Thermal Shock Resistance, points 13
11

Alloy Composition

Aluminum (Al), % 93.1 to 97.8
82.9 to 89
Bismuth (Bi), % 0.4 to 0.7
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0.15 to 0.4
0 to 1.0
Iron (Fe), % 0 to 0.7
0 to 1.3
Lead (Pb), % 0.4 to 1.2
0
Magnesium (Mg), % 0.6 to 1.2
0 to 0.1
Manganese (Mn), % 0.3 to 0.8
0 to 0.35
Nickel (Ni), % 0
0 to 0.5
Silicon (Si), % 0.5 to 1.2
11 to 13
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.3
0 to 0.5
Residuals, % 0
0 to 0.25