MakeItFrom.com
Menu (ESC)

6018 Aluminum vs. ACI-ASTM CG8M Steel

6018 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CG8M steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6018 aluminum and the bottom bar is ACI-ASTM CG8M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 9.0 to 9.1
45
Fatigue Strength, MPa 85 to 89
280
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
79
Tensile Strength: Ultimate (UTS), MPa 290 to 300
550
Tensile Strength: Yield (Proof), MPa 220 to 230
300

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 160
1020
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 570
1400
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 170
16
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
20
Density, g/cm3 2.9
7.9
Embodied Carbon, kg CO2/kg material 8.2
4.1
Embodied Energy, MJ/kg 150
56
Embodied Water, L/kg 1180
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 25
210
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
220
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
25
Strength to Weight: Axial, points 28 to 29
19
Strength to Weight: Bending, points 34 to 35
19
Thermal Diffusivity, mm2/s 65
4.3
Thermal Shock Resistance, points 13
12

Alloy Composition

Aluminum (Al), % 93.1 to 97.8
0
Bismuth (Bi), % 0.4 to 0.7
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.1
18 to 21
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.7
58.8 to 70
Lead (Pb), % 0.4 to 1.2
0
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.3 to 0.8
0 to 1.5
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
9.0 to 13
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.5 to 1.2
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0