MakeItFrom.com
Menu (ESC)

6018 Aluminum vs. ACI-ASTM CN3M Steel

6018 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CN3M steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6018 aluminum and the bottom bar is ACI-ASTM CN3M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 9.0 to 9.1
34
Fatigue Strength, MPa 85 to 89
150
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 290 to 300
500
Tensile Strength: Yield (Proof), MPa 220 to 230
190

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 570
1400
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 170
13
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
31
Density, g/cm3 2.9
8.1
Embodied Carbon, kg CO2/kg material 8.2
5.9
Embodied Energy, MJ/kg 150
80
Embodied Water, L/kg 1180
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 25
130
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
89
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
24
Strength to Weight: Axial, points 28 to 29
17
Strength to Weight: Bending, points 34 to 35
17
Thermal Diffusivity, mm2/s 65
3.4
Thermal Shock Resistance, points 13
11

Alloy Composition

Aluminum (Al), % 93.1 to 97.8
0
Bismuth (Bi), % 0.4 to 0.7
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
20 to 22
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.7
42.4 to 52.5
Lead (Pb), % 0.4 to 1.2
0
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.3 to 0.8
0 to 2.0
Molybdenum (Mo), % 0
4.5 to 5.5
Nickel (Ni), % 0
23 to 27
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.5 to 1.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0