MakeItFrom.com
Menu (ESC)

6018 Aluminum vs. ASTM Grade HL Steel

6018 aluminum belongs to the aluminum alloys classification, while ASTM grade HL steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6018 aluminum and the bottom bar is ASTM grade HL steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 9.0 to 9.1
11
Fatigue Strength, MPa 85 to 89
150
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 290 to 300
500
Tensile Strength: Yield (Proof), MPa 220 to 230
270

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 640
1390
Melting Onset (Solidus), °C 570
1340
Specific Heat Capacity, J/kg-K 890
490
Thermal Expansion, µm/m-K 23
17

Otherwise Unclassified Properties

Base Metal Price, % relative 10
27
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 8.2
4.5
Embodied Energy, MJ/kg 150
65
Embodied Water, L/kg 1180
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 25
48
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
25
Strength to Weight: Axial, points 28 to 29
18
Strength to Weight: Bending, points 34 to 35
18
Thermal Shock Resistance, points 13
11

Alloy Composition

Aluminum (Al), % 93.1 to 97.8
0
Bismuth (Bi), % 0.4 to 0.7
0
Carbon (C), % 0
0.2 to 0.6
Chromium (Cr), % 0 to 0.1
28 to 32
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.7
40.8 to 53.8
Lead (Pb), % 0.4 to 1.2
0
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.3 to 0.8
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
18 to 22
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.5 to 1.2
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0