MakeItFrom.com
Menu (ESC)

6018 Aluminum vs. EN 1.0303 Steel

6018 aluminum belongs to the aluminum alloys classification, while EN 1.0303 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6018 aluminum and the bottom bar is EN 1.0303 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 9.0 to 9.1
12 to 25
Fatigue Strength, MPa 85 to 89
150 to 230
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 170 to 180
220 to 260
Tensile Strength: Ultimate (UTS), MPa 290 to 300
290 to 410
Tensile Strength: Yield (Proof), MPa 220 to 230
200 to 320

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 160
400
Melting Completion (Liquidus), °C 640
1470
Melting Onset (Solidus), °C 570
1430
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 170
53
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 140
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
1.8
Density, g/cm3 2.9
7.9
Embodied Carbon, kg CO2/kg material 8.2
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1180
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 25
30 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
110 to 270
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 48
24
Strength to Weight: Axial, points 28 to 29
10 to 15
Strength to Weight: Bending, points 34 to 35
12 to 16
Thermal Diffusivity, mm2/s 65
14
Thermal Shock Resistance, points 13
9.2 to 13

Alloy Composition

Aluminum (Al), % 93.1 to 97.8
0.020 to 0.060
Bismuth (Bi), % 0.4 to 0.7
0
Carbon (C), % 0
0.020 to 0.060
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.7
99.335 to 99.71
Lead (Pb), % 0.4 to 1.2
0
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.3 to 0.8
0.25 to 0.4
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.5 to 1.2
0 to 0.1
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0