MakeItFrom.com
Menu (ESC)

6018 Aluminum vs. EN 1.4034 Stainless Steel

6018 aluminum belongs to the aluminum alloys classification, while EN 1.4034 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6018 aluminum and the bottom bar is EN 1.4034 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 9.0 to 9.1
11 to 14
Fatigue Strength, MPa 85 to 89
230 to 400
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 170 to 180
420 to 540
Tensile Strength: Ultimate (UTS), MPa 290 to 300
690 to 900
Tensile Strength: Yield (Proof), MPa 220 to 230
390 to 730

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 160
770
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 570
1390
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 170
30
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 140
3.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
7.0
Density, g/cm3 2.9
7.7
Embodied Carbon, kg CO2/kg material 8.2
2.0
Embodied Energy, MJ/kg 150
27
Embodied Water, L/kg 1180
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 25
81 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
400 to 1370
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
25
Strength to Weight: Axial, points 28 to 29
25 to 32
Strength to Weight: Bending, points 34 to 35
22 to 27
Thermal Diffusivity, mm2/s 65
8.1
Thermal Shock Resistance, points 13
24 to 32

Alloy Composition

Aluminum (Al), % 93.1 to 97.8
0
Bismuth (Bi), % 0.4 to 0.7
0
Carbon (C), % 0
0.43 to 0.5
Chromium (Cr), % 0 to 0.1
12.5 to 14.5
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.7
83 to 87.1
Lead (Pb), % 0.4 to 1.2
0
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.3 to 0.8
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.5 to 1.2
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0