MakeItFrom.com
Menu (ESC)

6018 Aluminum vs. EN 1.8505 Steel

6018 aluminum belongs to the aluminum alloys classification, while EN 1.8505 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6018 aluminum and the bottom bar is EN 1.8505 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 9.0 to 9.1
13
Fatigue Strength, MPa 85 to 89
540
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 170 to 180
630
Tensile Strength: Ultimate (UTS), MPa 290 to 300
1050
Tensile Strength: Yield (Proof), MPa 220 to 230
860

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 160
440
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 570
1410
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 170
39
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
2.8
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 8.2
1.6
Embodied Energy, MJ/kg 150
22
Embodied Water, L/kg 1180
65

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 25
120
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
1950
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 48
25
Strength to Weight: Axial, points 28 to 29
37
Strength to Weight: Bending, points 34 to 35
30
Thermal Diffusivity, mm2/s 65
11
Thermal Shock Resistance, points 13
31

Alloy Composition

Aluminum (Al), % 93.1 to 97.8
0.8 to 1.2
Bismuth (Bi), % 0.4 to 0.7
0
Carbon (C), % 0
0.28 to 0.35
Chromium (Cr), % 0 to 0.1
1.5 to 1.8
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.7
95.4 to 97.1
Lead (Pb), % 0.4 to 1.2
0
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.3 to 0.8
0.4 to 0.7
Molybdenum (Mo), % 0
0.2 to 0.4
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.5 to 1.2
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0