MakeItFrom.com
Menu (ESC)

6018 Aluminum vs. EN 1.8823 Steel

6018 aluminum belongs to the aluminum alloys classification, while EN 1.8823 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6018 aluminum and the bottom bar is EN 1.8823 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 9.0 to 9.1
25
Fatigue Strength, MPa 85 to 89
270
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 170 to 180
340
Tensile Strength: Ultimate (UTS), MPa 290 to 300
530
Tensile Strength: Yield (Proof), MPa 220 to 230
360

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 160
410
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 570
1420
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 170
47
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
2.4
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 8.2
1.6
Embodied Energy, MJ/kg 150
22
Embodied Water, L/kg 1180
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 25
120
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
360
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 48
24
Strength to Weight: Axial, points 28 to 29
19
Strength to Weight: Bending, points 34 to 35
19
Thermal Diffusivity, mm2/s 65
13
Thermal Shock Resistance, points 13
16

Alloy Composition

Aluminum (Al), % 93.1 to 97.8
0.015 to 0.034
Bismuth (Bi), % 0.4 to 0.7
0
Carbon (C), % 0
0 to 0.16
Chromium (Cr), % 0 to 0.1
0 to 0.35
Copper (Cu), % 0.15 to 0.4
0 to 0.6
Iron (Fe), % 0 to 0.7
95.6 to 99.985
Lead (Pb), % 0.4 to 1.2
0
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.3 to 0.8
0 to 1.7
Molybdenum (Mo), % 0
0 to 0.13
Nickel (Ni), % 0
0 to 0.55
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.017
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0.5 to 1.2
0 to 0.55
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0 to 0.060
Vanadium (V), % 0
0 to 0.12
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0