MakeItFrom.com
Menu (ESC)

6018 Aluminum vs. EN AC-45300 Aluminum

Both 6018 aluminum and EN AC-45300 aluminum are aluminum alloys. They have a moderately high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6018 aluminum and the bottom bar is EN AC-45300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
71
Elongation at Break, % 9.0 to 9.1
1.0 to 2.8
Fatigue Strength, MPa 85 to 89
59 to 72
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 290 to 300
220 to 290
Tensile Strength: Yield (Proof), MPa 220 to 230
150 to 230

Thermal Properties

Latent Heat of Fusion, J/g 400
470
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 640
630
Melting Onset (Solidus), °C 570
590
Specific Heat Capacity, J/kg-K 890
890
Thermal Conductivity, W/m-K 170
150
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
36
Electrical Conductivity: Equal Weight (Specific), % IACS 140
120

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 2.9
2.7
Embodied Carbon, kg CO2/kg material 8.2
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 25
2.7 to 5.6
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
160 to 390
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
50
Strength to Weight: Axial, points 28 to 29
23 to 29
Strength to Weight: Bending, points 34 to 35
30 to 35
Thermal Diffusivity, mm2/s 65
60
Thermal Shock Resistance, points 13
10 to 13

Alloy Composition

Aluminum (Al), % 93.1 to 97.8
90.2 to 94.2
Bismuth (Bi), % 0.4 to 0.7
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0.15 to 0.4
1.0 to 1.5
Iron (Fe), % 0 to 0.7
0 to 0.65
Lead (Pb), % 0.4 to 1.2
0 to 0.15
Magnesium (Mg), % 0.6 to 1.2
0.35 to 0.65
Manganese (Mn), % 0.3 to 0.8
0 to 0.55
Nickel (Ni), % 0
0 to 0.25
Silicon (Si), % 0.5 to 1.2
4.5 to 5.5
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.2
0 to 0.25
Zinc (Zn), % 0 to 0.3
0 to 0.15
Residuals, % 0
0 to 0.15

Comparable Variants