MakeItFrom.com
Menu (ESC)

6018 Aluminum vs. EN AC-46300 Aluminum

Both 6018 aluminum and EN AC-46300 aluminum are aluminum alloys. They have 90% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6018 aluminum and the bottom bar is EN AC-46300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
73
Elongation at Break, % 9.0 to 9.1
1.1
Fatigue Strength, MPa 85 to 89
79
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 290 to 300
200
Tensile Strength: Yield (Proof), MPa 220 to 230
110

Thermal Properties

Latent Heat of Fusion, J/g 400
490
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 640
630
Melting Onset (Solidus), °C 570
530
Specific Heat Capacity, J/kg-K 890
880
Thermal Conductivity, W/m-K 170
120
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
27
Electrical Conductivity: Equal Weight (Specific), % IACS 140
84

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 2.9
2.9
Embodied Carbon, kg CO2/kg material 8.2
7.7
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1180
1060

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 25
1.9
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
89
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
49
Strength to Weight: Axial, points 28 to 29
20
Strength to Weight: Bending, points 34 to 35
27
Thermal Diffusivity, mm2/s 65
47
Thermal Shock Resistance, points 13
9.1

Alloy Composition

Aluminum (Al), % 93.1 to 97.8
84 to 90
Bismuth (Bi), % 0.4 to 0.7
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0.15 to 0.4
3.0 to 4.0
Iron (Fe), % 0 to 0.7
0 to 0.8
Lead (Pb), % 0.4 to 1.2
0 to 0.15
Magnesium (Mg), % 0.6 to 1.2
0.3 to 0.6
Manganese (Mn), % 0.3 to 0.8
0.2 to 0.65
Nickel (Ni), % 0
0 to 0.3
Silicon (Si), % 0.5 to 1.2
6.5 to 8.0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0 to 0.2
0 to 0.25
Zinc (Zn), % 0 to 0.3
0 to 0.65
Residuals, % 0
0 to 0.55