MakeItFrom.com
Menu (ESC)

6018 Aluminum vs. EN AC-51500 Aluminum

Both 6018 aluminum and EN AC-51500 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6018 aluminum and the bottom bar is EN AC-51500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
68
Elongation at Break, % 9.0 to 9.1
5.6
Fatigue Strength, MPa 85 to 89
120
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 290 to 300
280
Tensile Strength: Yield (Proof), MPa 220 to 230
160

Thermal Properties

Latent Heat of Fusion, J/g 400
430
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 640
630
Melting Onset (Solidus), °C 570
590
Specific Heat Capacity, J/kg-K 890
910
Thermal Conductivity, W/m-K 170
120
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
26
Electrical Conductivity: Equal Weight (Specific), % IACS 140
88

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 2.9
2.6
Embodied Carbon, kg CO2/kg material 8.2
9.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 25
13
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
190
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
52
Strength to Weight: Axial, points 28 to 29
29
Strength to Weight: Bending, points 34 to 35
36
Thermal Diffusivity, mm2/s 65
49
Thermal Shock Resistance, points 13
13

Alloy Composition

Aluminum (Al), % 93.1 to 97.8
89.8 to 93.1
Bismuth (Bi), % 0.4 to 0.7
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0.15 to 0.4
0 to 0.050
Iron (Fe), % 0 to 0.7
0 to 0.25
Lead (Pb), % 0.4 to 1.2
0
Magnesium (Mg), % 0.6 to 1.2
4.7 to 6.0
Manganese (Mn), % 0.3 to 0.8
0.4 to 0.8
Silicon (Si), % 0.5 to 1.2
1.8 to 2.6
Titanium (Ti), % 0 to 0.2
0 to 0.25
Zinc (Zn), % 0 to 0.3
0 to 0.070
Residuals, % 0
0 to 0.15