MakeItFrom.com
Menu (ESC)

6018 Aluminum vs. Grade Ti-Pd16 Titanium

6018 aluminum belongs to the aluminum alloys classification, while grade Ti-Pd16 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 6018 aluminum and the bottom bar is grade Ti-Pd16 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
110
Elongation at Break, % 9.0 to 9.1
17
Fatigue Strength, MPa 85 to 89
200
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 290 to 300
390
Tensile Strength: Yield (Proof), MPa 220 to 230
310

Thermal Properties

Latent Heat of Fusion, J/g 400
420
Maximum Temperature: Mechanical, °C 160
320
Melting Completion (Liquidus), °C 640
1660
Melting Onset (Solidus), °C 570
1610
Specific Heat Capacity, J/kg-K 890
540
Thermal Conductivity, W/m-K 170
22
Thermal Expansion, µm/m-K 23
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 140
7.1

Otherwise Unclassified Properties

Density, g/cm3 2.9
4.5
Embodied Carbon, kg CO2/kg material 8.2
36
Embodied Energy, MJ/kg 150
600
Embodied Water, L/kg 1180
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 25
62
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
440
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 48
35
Strength to Weight: Axial, points 28 to 29
24
Strength to Weight: Bending, points 34 to 35
26
Thermal Diffusivity, mm2/s 65
8.9
Thermal Shock Resistance, points 13
30

Alloy Composition

Aluminum (Al), % 93.1 to 97.8
0
Bismuth (Bi), % 0.4 to 0.7
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0.15 to 0.4
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.7
0 to 0.3
Lead (Pb), % 0.4 to 1.2
0
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.3 to 0.8
0
Nickel (Ni), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.18
Palladium (Pd), % 0
0.040 to 0.080
Silicon (Si), % 0.5 to 1.2
0
Titanium (Ti), % 0 to 0.2
98.8 to 99.96
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0
0 to 0.4