MakeItFrom.com
Menu (ESC)

6018 Aluminum vs. SAE-AISI 1010 Steel

6018 aluminum belongs to the aluminum alloys classification, while SAE-AISI 1010 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6018 aluminum and the bottom bar is SAE-AISI 1010 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 9.0 to 9.1
22 to 31
Fatigue Strength, MPa 85 to 89
150 to 230
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 170 to 180
230 to 250
Tensile Strength: Ultimate (UTS), MPa 290 to 300
350 to 400
Tensile Strength: Yield (Proof), MPa 220 to 230
190 to 330

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 160
400
Melting Completion (Liquidus), °C 640
1470
Melting Onset (Solidus), °C 570
1430
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 170
47
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
12
Electrical Conductivity: Equal Weight (Specific), % IACS 140
14

Otherwise Unclassified Properties

Base Metal Price, % relative 10
1.8
Density, g/cm3 2.9
7.9
Embodied Carbon, kg CO2/kg material 8.2
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1180
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 25
82 to 93
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
100 to 290
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 48
24
Strength to Weight: Axial, points 28 to 29
12 to 14
Strength to Weight: Bending, points 34 to 35
14 to 15
Thermal Diffusivity, mm2/s 65
13
Thermal Shock Resistance, points 13
11 to 13

Alloy Composition

Aluminum (Al), % 93.1 to 97.8
0
Bismuth (Bi), % 0.4 to 0.7
0
Carbon (C), % 0
0.080 to 0.13
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.7
99.18 to 99.62
Lead (Pb), % 0.4 to 1.2
0
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.3 to 0.8
0.3 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.5 to 1.2
0
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0