MakeItFrom.com
Menu (ESC)

6018 Aluminum vs. SAE-AISI 1084 Steel

6018 aluminum belongs to the aluminum alloys classification, while SAE-AISI 1084 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6018 aluminum and the bottom bar is SAE-AISI 1084 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 9.0 to 9.1
11
Fatigue Strength, MPa 85 to 89
320 to 370
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Shear Strength, MPa 170 to 180
470 to 550
Tensile Strength: Ultimate (UTS), MPa 290 to 300
780 to 930
Tensile Strength: Yield (Proof), MPa 220 to 230
510 to 600

Thermal Properties

Latent Heat of Fusion, J/g 400
240
Maximum Temperature: Mechanical, °C 160
400
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 570
1410
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 170
51
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 10
1.8
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 8.2
1.4
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1180
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 25
81 to 89
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
700 to 960
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 48
24
Strength to Weight: Axial, points 28 to 29
28 to 33
Strength to Weight: Bending, points 34 to 35
24 to 27
Thermal Diffusivity, mm2/s 65
14
Thermal Shock Resistance, points 13
25 to 30

Alloy Composition

Aluminum (Al), % 93.1 to 97.8
0
Bismuth (Bi), % 0.4 to 0.7
0
Carbon (C), % 0
0.8 to 0.93
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.7
98.1 to 98.6
Lead (Pb), % 0.4 to 1.2
0
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.3 to 0.8
0.6 to 0.9
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.5 to 1.2
0
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0