MakeItFrom.com
Menu (ESC)

6018 Aluminum vs. C61800 Bronze

6018 aluminum belongs to the aluminum alloys classification, while C61800 bronze belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6018 aluminum and the bottom bar is C61800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
110
Elongation at Break, % 9.0 to 9.1
26
Fatigue Strength, MPa 85 to 89
190
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
44
Shear Strength, MPa 170 to 180
310
Tensile Strength: Ultimate (UTS), MPa 290 to 300
740
Tensile Strength: Yield (Proof), MPa 220 to 230
310

Thermal Properties

Latent Heat of Fusion, J/g 400
230
Maximum Temperature: Mechanical, °C 160
220
Melting Completion (Liquidus), °C 640
1050
Melting Onset (Solidus), °C 570
1040
Specific Heat Capacity, J/kg-K 890
440
Thermal Conductivity, W/m-K 170
64
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
13
Electrical Conductivity: Equal Weight (Specific), % IACS 140
14

Otherwise Unclassified Properties

Base Metal Price, % relative 10
28
Density, g/cm3 2.9
8.3
Embodied Carbon, kg CO2/kg material 8.2
3.1
Embodied Energy, MJ/kg 150
52
Embodied Water, L/kg 1180
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 25
150
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
420
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 48
19
Strength to Weight: Axial, points 28 to 29
25
Strength to Weight: Bending, points 34 to 35
22
Thermal Diffusivity, mm2/s 65
18
Thermal Shock Resistance, points 13
26

Alloy Composition

Aluminum (Al), % 93.1 to 97.8
8.5 to 11
Bismuth (Bi), % 0.4 to 0.7
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0.15 to 0.4
86.9 to 91
Iron (Fe), % 0 to 0.7
0.5 to 1.5
Lead (Pb), % 0.4 to 1.2
0 to 0.020
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.3 to 0.8
0
Silicon (Si), % 0.5 to 1.2
0 to 0.1
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.3
0 to 0.020
Residuals, % 0
0 to 0.5