MakeItFrom.com
Menu (ESC)

6018 Aluminum vs. N06210 Nickel

6018 aluminum belongs to the aluminum alloys classification, while N06210 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6018 aluminum and the bottom bar is N06210 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
220
Elongation at Break, % 9.0 to 9.1
51
Fatigue Strength, MPa 85 to 89
320
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
85
Shear Strength, MPa 170 to 180
560
Tensile Strength: Ultimate (UTS), MPa 290 to 300
780
Tensile Strength: Yield (Proof), MPa 220 to 230
350

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 160
980
Melting Completion (Liquidus), °C 640
1570
Melting Onset (Solidus), °C 570
1510
Specific Heat Capacity, J/kg-K 890
420
Thermal Expansion, µm/m-K 23
12

Otherwise Unclassified Properties

Base Metal Price, % relative 10
85
Density, g/cm3 2.9
9.0
Embodied Carbon, kg CO2/kg material 8.2
17
Embodied Energy, MJ/kg 150
250
Embodied Water, L/kg 1180
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 25
320
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
280
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
22
Strength to Weight: Axial, points 28 to 29
24
Strength to Weight: Bending, points 34 to 35
21
Thermal Shock Resistance, points 13
22

Alloy Composition

Aluminum (Al), % 93.1 to 97.8
0
Bismuth (Bi), % 0.4 to 0.7
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0 to 0.1
18 to 20
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.7
0 to 1.0
Lead (Pb), % 0.4 to 1.2
0
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.3 to 0.8
0 to 0.5
Molybdenum (Mo), % 0
18 to 20
Nickel (Ni), % 0
54.8 to 62.5
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.5 to 1.2
0 to 0.080
Sulfur (S), % 0
0 to 0.020
Tantalum (Ta), % 0
1.5 to 2.2
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0 to 0.35
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0