MakeItFrom.com
Menu (ESC)

6018 Aluminum vs. N06650 Nickel

6018 aluminum belongs to the aluminum alloys classification, while N06650 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6018 aluminum and the bottom bar is N06650 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
210
Elongation at Break, % 9.0 to 9.1
50
Fatigue Strength, MPa 85 to 89
420
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
82
Shear Strength, MPa 170 to 180
640
Tensile Strength: Ultimate (UTS), MPa 290 to 300
900
Tensile Strength: Yield (Proof), MPa 220 to 230
460

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 160
980
Melting Completion (Liquidus), °C 640
1500
Melting Onset (Solidus), °C 570
1450
Specific Heat Capacity, J/kg-K 890
440
Thermal Expansion, µm/m-K 23
12

Otherwise Unclassified Properties

Base Metal Price, % relative 10
60
Density, g/cm3 2.9
8.6
Embodied Carbon, kg CO2/kg material 8.2
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1180
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 25
380
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
490
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
23
Strength to Weight: Axial, points 28 to 29
29
Strength to Weight: Bending, points 34 to 35
24
Thermal Shock Resistance, points 13
24

Alloy Composition

Aluminum (Al), % 93.1 to 97.8
0.050 to 0.5
Bismuth (Bi), % 0.4 to 0.7
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
19 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0.15 to 0.4
0 to 0.3
Iron (Fe), % 0 to 0.7
12 to 16
Lead (Pb), % 0.4 to 1.2
0
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.3 to 0.8
0 to 0.5
Molybdenum (Mo), % 0
9.5 to 12.5
Nickel (Ni), % 0
44.4 to 58.9
Niobium (Nb), % 0
0.050 to 0.5
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.5 to 1.2
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
0.5 to 2.5
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0