MakeItFrom.com
Menu (ESC)

6018 Aluminum vs. R30016 Cobalt

6018 aluminum belongs to the aluminum alloys classification, while R30016 cobalt belongs to the cobalt alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6018 aluminum and the bottom bar is R30016 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
220
Elongation at Break, % 9.0 to 9.1
8.4
Fatigue Strength, MPa 85 to 89
290
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
85
Tensile Strength: Ultimate (UTS), MPa 290 to 300
1010
Tensile Strength: Yield (Proof), MPa 220 to 230
580

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Melting Completion (Liquidus), °C 640
1360
Melting Onset (Solidus), °C 570
1270
Specific Heat Capacity, J/kg-K 890
450
Thermal Conductivity, W/m-K 170
15
Thermal Expansion, µm/m-K 23
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.0

Otherwise Unclassified Properties

Density, g/cm3 2.9
8.5
Embodied Carbon, kg CO2/kg material 8.2
7.7
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1180
500

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 25
72
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
770
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
24
Strength to Weight: Axial, points 28 to 29
33
Strength to Weight: Bending, points 34 to 35
26
Thermal Diffusivity, mm2/s 65
3.9
Thermal Shock Resistance, points 13
24

Alloy Composition

Aluminum (Al), % 93.1 to 97.8
0
Bismuth (Bi), % 0.4 to 0.7
0
Carbon (C), % 0
0.9 to 1.4
Chromium (Cr), % 0 to 0.1
28 to 32
Cobalt (Co), % 0
49.6 to 66.9
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.7
0 to 3.0
Lead (Pb), % 0.4 to 1.2
0
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.3 to 0.8
0.5 to 2.0
Molybdenum (Mo), % 0
0 to 1.5
Nickel (Ni), % 0
0 to 3.0
Silicon (Si), % 0.5 to 1.2
0.2 to 2.0
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
3.5 to 5.5
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0