MakeItFrom.com
Menu (ESC)

6023 Aluminum vs. 1200 Aluminum

Both 6023 aluminum and 1200 aluminum are aluminum alloys. They have a very high 97% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 6023 aluminum and the bottom bar is 1200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
69
Elongation at Break, % 11
1.1 to 28
Fatigue Strength, MPa 120 to 130
25 to 69
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 210 to 220
54 to 100
Tensile Strength: Ultimate (UTS), MPa 360
85 to 180
Tensile Strength: Yield (Proof), MPa 300 to 310
28 to 160

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 640
660
Melting Onset (Solidus), °C 580
650
Specific Heat Capacity, J/kg-K 890
900
Thermal Conductivity, W/m-K 170
230
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
58
Electrical Conductivity: Equal Weight (Specific), % IACS 140
190

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.0
Density, g/cm3 2.8
2.7
Embodied Carbon, kg CO2/kg material 8.3
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 39
2.0 to 19
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 690
5.7 to 180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
50
Strength to Weight: Axial, points 35 to 36
8.7 to 19
Strength to Weight: Bending, points 40
16 to 26
Thermal Diffusivity, mm2/s 67
92
Thermal Shock Resistance, points 16
3.8 to 8.1

Alloy Composition

Aluminum (Al), % 94 to 97.7
99 to 100
Bismuth (Bi), % 0.3 to 0.8
0
Copper (Cu), % 0.2 to 0.5
0 to 0.050
Iron (Fe), % 0 to 0.5
0 to 1.0
Magnesium (Mg), % 0.4 to 0.9
0
Manganese (Mn), % 0.2 to 0.6
0 to 0.050
Silicon (Si), % 0.6 to 1.4
0 to 1.0
Tin (Sn), % 0.6 to 1.2
0
Titanium (Ti), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15