MakeItFrom.com
Menu (ESC)

6023 Aluminum vs. EN 1.4869 Casting Alloy

6023 aluminum belongs to the aluminum alloys classification, while EN 1.4869 casting alloy belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6023 aluminum and the bottom bar is EN 1.4869 casting alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
210
Elongation at Break, % 11
5.7
Fatigue Strength, MPa 120 to 130
130
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 360
540
Tensile Strength: Yield (Proof), MPa 300 to 310
310

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 160
1200
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 580
1390
Specific Heat Capacity, J/kg-K 890
460
Thermal Conductivity, W/m-K 170
10
Thermal Expansion, µm/m-K 23
13

Otherwise Unclassified Properties

Base Metal Price, % relative 11
70
Density, g/cm3 2.8
8.5
Embodied Carbon, kg CO2/kg material 8.3
7.7
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1180
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 39
26
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 690
230
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
23
Strength to Weight: Axial, points 35 to 36
18
Strength to Weight: Bending, points 40
17
Thermal Diffusivity, mm2/s 67
2.6
Thermal Shock Resistance, points 16
14

Alloy Composition

Aluminum (Al), % 94 to 97.7
0
Bismuth (Bi), % 0.3 to 0.8
0
Carbon (C), % 0
0.45 to 0.55
Chromium (Cr), % 0
24 to 26
Cobalt (Co), % 0
14 to 16
Copper (Cu), % 0.2 to 0.5
0
Iron (Fe), % 0 to 0.5
11.4 to 23.6
Magnesium (Mg), % 0.4 to 0.9
0
Manganese (Mn), % 0.2 to 0.6
0 to 1.0
Nickel (Ni), % 0
33 to 37
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.6 to 1.4
1.0 to 2.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.6 to 1.2
0
Tungsten (W), % 0
4.0 to 6.0
Residuals, % 0 to 0.15
0