MakeItFrom.com
Menu (ESC)

6023 Aluminum vs. EN 1.4911 Stainless Steel

6023 aluminum belongs to the aluminum alloys classification, while EN 1.4911 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6023 aluminum and the bottom bar is EN 1.4911 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 11
11
Fatigue Strength, MPa 120 to 130
530
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 210 to 220
640
Tensile Strength: Ultimate (UTS), MPa 360
1070
Tensile Strength: Yield (Proof), MPa 300 to 310
970

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 160
700
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 580
1410
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 170
20
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 140
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 11
20
Density, g/cm3 2.8
7.9
Embodied Carbon, kg CO2/kg material 8.3
3.4
Embodied Energy, MJ/kg 150
49
Embodied Water, L/kg 1180
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 39
120
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 690
2410
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 35 to 36
38
Strength to Weight: Bending, points 40
30
Thermal Diffusivity, mm2/s 67
5.4
Thermal Shock Resistance, points 16
37

Alloy Composition

Aluminum (Al), % 94 to 97.7
0
Bismuth (Bi), % 0.3 to 0.8
0
Boron (B), % 0
0.0050 to 0.015
Carbon (C), % 0
0.050 to 0.12
Chromium (Cr), % 0
9.8 to 11.2
Cobalt (Co), % 0
5.0 to 7.0
Copper (Cu), % 0.2 to 0.5
0
Iron (Fe), % 0 to 0.5
75.7 to 83.8
Magnesium (Mg), % 0.4 to 0.9
0
Manganese (Mn), % 0.2 to 0.6
0.3 to 1.3
Molybdenum (Mo), % 0
0.5 to 1.0
Nickel (Ni), % 0
0.2 to 1.2
Niobium (Nb), % 0
0.2 to 0.5
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.6 to 1.4
0.1 to 0.8
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.6 to 1.2
0
Tungsten (W), % 0
0 to 0.7
Vanadium (V), % 0
0.1 to 0.4
Residuals, % 0 to 0.15
0