MakeItFrom.com
Menu (ESC)

6023 Aluminum vs. EN 1.7376 Steel

6023 aluminum belongs to the aluminum alloys classification, while EN 1.7376 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6023 aluminum and the bottom bar is EN 1.7376 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 11
20
Fatigue Strength, MPa 120 to 130
320
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
75
Tensile Strength: Ultimate (UTS), MPa 360
710
Tensile Strength: Yield (Proof), MPa 300 to 310
460

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 160
600
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 580
1410
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 170
26
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
9.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
11

Otherwise Unclassified Properties

Base Metal Price, % relative 11
6.5
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.3
2.1
Embodied Energy, MJ/kg 150
29
Embodied Water, L/kg 1180
88

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 39
130
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 690
560
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 35 to 36
25
Strength to Weight: Bending, points 40
23
Thermal Diffusivity, mm2/s 67
6.9
Thermal Shock Resistance, points 16
20

Alloy Composition

Aluminum (Al), % 94 to 97.7
0
Bismuth (Bi), % 0.3 to 0.8
0
Carbon (C), % 0
0.12 to 0.19
Chromium (Cr), % 0
8.0 to 10
Copper (Cu), % 0.2 to 0.5
0 to 0.3
Iron (Fe), % 0 to 0.5
86.2 to 90.6
Magnesium (Mg), % 0.4 to 0.9
0
Manganese (Mn), % 0.2 to 0.6
0.35 to 0.65
Molybdenum (Mo), % 0
0.9 to 1.2
Nickel (Ni), % 0
0 to 0.4
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.6 to 1.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.6 to 1.2
0
Vanadium (V), % 0
0 to 0.050
Residuals, % 0 to 0.15
0