MakeItFrom.com
Menu (ESC)

6023 Aluminum vs. EN AC-51400 Aluminum

Both 6023 aluminum and EN AC-51400 aluminum are aluminum alloys. They have a moderately high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6023 aluminum and the bottom bar is EN AC-51400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
67
Elongation at Break, % 11
3.4
Fatigue Strength, MPa 120 to 130
85
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
25
Tensile Strength: Ultimate (UTS), MPa 360
190
Tensile Strength: Yield (Proof), MPa 300 to 310
120

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 580
600
Specific Heat Capacity, J/kg-K 890
910
Thermal Conductivity, W/m-K 170
110
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
31
Electrical Conductivity: Equal Weight (Specific), % IACS 140
110

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 2.8
2.7
Embodied Carbon, kg CO2/kg material 8.3
9.1
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 39
5.6
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 690
110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
51
Strength to Weight: Axial, points 35 to 36
20
Strength to Weight: Bending, points 40
28
Thermal Diffusivity, mm2/s 67
46
Thermal Shock Resistance, points 16
8.6

Alloy Composition

Aluminum (Al), % 94 to 97.7
90.5 to 95.5
Bismuth (Bi), % 0.3 to 0.8
0
Copper (Cu), % 0.2 to 0.5
0 to 0.050
Iron (Fe), % 0 to 0.5
0 to 0.55
Magnesium (Mg), % 0.4 to 0.9
4.5 to 6.5
Manganese (Mn), % 0.2 to 0.6
0 to 0.45
Silicon (Si), % 0.6 to 1.4
0 to 1.5
Tin (Sn), % 0.6 to 1.2
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15