MakeItFrom.com
Menu (ESC)

6023 Aluminum vs. Grade 36 Titanium

6023 aluminum belongs to the aluminum alloys classification, while grade 36 titanium belongs to the titanium alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6023 aluminum and the bottom bar is grade 36 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
110
Elongation at Break, % 11
11
Fatigue Strength, MPa 120 to 130
300
Poisson's Ratio 0.33
0.36
Shear Modulus, GPa 26
39
Shear Strength, MPa 210 to 220
320
Tensile Strength: Ultimate (UTS), MPa 360
530
Tensile Strength: Yield (Proof), MPa 300 to 310
520

Thermal Properties

Latent Heat of Fusion, J/g 400
370
Maximum Temperature: Mechanical, °C 160
320
Melting Completion (Liquidus), °C 640
2020
Melting Onset (Solidus), °C 580
1950
Specific Heat Capacity, J/kg-K 890
420
Thermal Expansion, µm/m-K 23
8.1

Otherwise Unclassified Properties

Density, g/cm3 2.8
6.3
Embodied Carbon, kg CO2/kg material 8.3
58
Embodied Energy, MJ/kg 150
920
Embodied Water, L/kg 1180
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 39
59
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 690
1260
Stiffness to Weight: Axial, points 14
9.3
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 35 to 36
23
Strength to Weight: Bending, points 40
23
Thermal Shock Resistance, points 16
45

Alloy Composition

Aluminum (Al), % 94 to 97.7
0
Bismuth (Bi), % 0.3 to 0.8
0
Carbon (C), % 0
0 to 0.030
Copper (Cu), % 0.2 to 0.5
0
Hydrogen (H), % 0
0 to 0.0035
Iron (Fe), % 0 to 0.5
0 to 0.030
Magnesium (Mg), % 0.4 to 0.9
0
Manganese (Mn), % 0.2 to 0.6
0
Niobium (Nb), % 0
42 to 47
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.16
Silicon (Si), % 0.6 to 1.4
0
Tin (Sn), % 0.6 to 1.2
0
Titanium (Ti), % 0
52.3 to 58
Residuals, % 0
0 to 0.4