MakeItFrom.com
Menu (ESC)

6023 Aluminum vs. Grade CW12MW Nickel

6023 aluminum belongs to the aluminum alloys classification, while grade CW12MW nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6023 aluminum and the bottom bar is grade CW12MW nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
220
Elongation at Break, % 11
4.6
Fatigue Strength, MPa 120 to 130
130
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
85
Tensile Strength: Ultimate (UTS), MPa 360
560
Tensile Strength: Yield (Proof), MPa 300 to 310
310

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 160
960
Melting Completion (Liquidus), °C 640
1610
Melting Onset (Solidus), °C 580
1560
Specific Heat Capacity, J/kg-K 890
410
Thermal Expansion, µm/m-K 23
12

Otherwise Unclassified Properties

Base Metal Price, % relative 11
70
Density, g/cm3 2.8
9.1
Embodied Carbon, kg CO2/kg material 8.3
13
Embodied Energy, MJ/kg 150
180
Embodied Water, L/kg 1180
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 39
22
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 690
220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
22
Strength to Weight: Axial, points 35 to 36
17
Strength to Weight: Bending, points 40
17
Thermal Shock Resistance, points 16
16

Alloy Composition

Aluminum (Al), % 94 to 97.7
0
Bismuth (Bi), % 0.3 to 0.8
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
15.5 to 17.5
Copper (Cu), % 0.2 to 0.5
0
Iron (Fe), % 0 to 0.5
4.5 to 7.5
Magnesium (Mg), % 0.4 to 0.9
0
Manganese (Mn), % 0.2 to 0.6
0 to 1.0
Molybdenum (Mo), % 0
16 to 18
Nickel (Ni), % 0
49.2 to 60.1
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.6 to 1.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.6 to 1.2
0
Tungsten (W), % 0
3.8 to 5.3
Vanadium (V), % 0
0.2 to 0.4
Residuals, % 0 to 0.15
0